
More than 1 million Americans are legally 
blind and another 10% cannot detect 

light .1 With increased mean lifespan, the frequency 
of age-related eye disease will double in the next 30 
years. 2 A significant percentage of 
the non-treatable blindness stems 
from loss of photoreceptors (the rods 
and cones) 3,4 Once photoreceptors 
are lost, restoring useful vision to 
blind patients has been impossible. 5  

However, after nearly a 
century of research into the use of 
electrical stimulation to restore sight, 
the Argus II system (Second Sight 
Medical Products, Inc. Sylmar, CA) was just approved 
by the FDA as the first medical implant to restore sight 
to patients who are blind from near total loss of their 
photoreceptors.   

NON-RETINAL VISUAL PROSTHESES 
	 The concept of artificial vision was first tested  
in 1929 when  electrical stimulation of the visual 
cortex resulted in a blind patient seeing a spot of 
light (phosphene). 6  More than 30 years later, Giles 
Brindley’s implantation of an 80-electrode device 
onto the visual cortex of a blind patient renewed the 
possibilities of artificial vision restoration. 7-14 But, this 
goal of developing a visual cortical implant to restore 
vision remains elusive. 12,13, 15-27    

RETINAL PROSTHESES
Analogous to the cochlear implants for some 

forms of deafness, retinal prostheses propose to restore 
useful vision by converting visual information into 
patterns of electrical stimulation that would excite the 
remaining inner retinal neurons after photoreceptor 
loss in diseases such as retinitis pigmentosa (RP) and 
age-related macular degeneration (AMD).  However, 
knowing that the retina has more than 100 million 
photoreceptors while the cochlea has only 15,000 hair 

cells, the retinal implant is obviously a much more 
complicated challenge. First, there must be enough 
viable retinal cells remaining to initiate a neural signal.  
Post mortem studies on patients’ eyes with end-stage 
RP and AMD have revealed that that plentiful numbers 
of non-photoreceptor neurons in the retina do survive 
the disease process. Although neurons in the retina 
survive despite photoreceptor loss, there is significant 
reorganization of the remaining neural network.44

In spite of these well-documented changes in 
the inner retina after photoreceptor loss, when hand-
held electrodes were inserted in the eye of blind test 
subjects in an operating room, the test subject detected 
small spots of light when the electrodes were activated 
and the apparent location of the spot of light in general 
corresponded with the retinal area stimulated. These 
critical experimental findings led directly to the 
development of chronic retinal implant systems.

 Two approaches have been evaluated thus 
far —subretinal implants (microphotodiode arrays 
inserted between the bipolar cell layer and retinal 
pigment epithelium) and epiretinal prostheses, in 
which visual information from devices like cameras 
provide the patterns of stimulation to the residual 
retinal neuronal networks.  The implantation of 
a subretinal prosthesis, as well as maintaining its 
electronic functionality over long-term, is much more 
difficult than the Argus II epiretinal prosthesis. As of 
now, no subretinal implants have been successful to be 
approved as medical implants. 47-52.

ARGUS II- EPIRETINAL PROSTHESIS 
	 Epiretinal implants vary in terms of how much 
of the required electronic circuitry is contained in the 
intraocular device and how they are connected to the  
extraocular elements ( induction coils, penetrating 
wires, or lasers) .
	 The ARGUS ™ II System (figure 1-2) is a two 
system implant in which the wearable and implantable 
units communicate wirelessly. The wearable 
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components include a miniature camera in the glasses 
from which information goes to a belt-worn pocket 
size video processing unit (VPU) with rechargeable 
battery. The VPU encodes the information and both 
power and data are then sent back to the glasses 
and then wirelessly (via a near field inductive link) 
sent to the implanted components. The implanted 
components consist of a receiver coil which then send 
the information to an implanted electronic chip inside 
a hermetic metal can. The implanted chip then decodes 
and routes controlled pulses via an integrated flexible 
cable with electrodes to excite retinal neurons. The 
electrode array is 6mmx5.5mmx0.5mm and when 
implanted in the center of the retina (i.e., macula) its 
diagonal dimension spans the central 20 degrees of 
visual field. All components of the Argus II fit inside 
the eye socket (orbit) and only the integrated cable 
with electrodes are placed inside the eye with the 
rest of the device sutured to the eye wall (sclera) and 
covered by the conjunctiva. 

Figure 1: 

Argus II Wearable components: (A) Glasses with camera and 
inductive (radio frequency) coil and associated electronics. (B) 
Video processing unit (VPU) with rechargeable battery. The VPU 
connects to the glasses via a cable and encodes the camera input 
and sends it back to the coil to be transmitted wirelessly to the 
implanted components. (C) Example of how the system can be 
worn with VPU using a shoulder sling. Alternatively VPU can be 
worn on a waist belt or put into a pocket. 

Figure 2:

Argus II implantable components. (A) shows the device ex-
panded and shows the various components. (B) Shows the device 
as it would be when wrapped around the eye; note the electrode 
array would be inserted through the eye wall (sclera). The entire 
implant is under the conjunctiva so it is not visible or exposed 
reducing the chances of infection. (C) Picture of the retina show-
ing the electrode array places in the central retina (macula) in a 
subject with RP.

(Credit: Mark Humayun and Second Sight Medical Products)

	

	 The Argus II safety and efficacy data from an 
international study of 30 patients with a cumulative 
follow up of approximately 100 years was submitted 
to the European and US regulatory bodies, leading to 
approval in Europe in 2011 and FDA approval in the 
US in 2013. All subjects were able to perceive light 
during electrical stimulation and 27 out of 28 subjects 
(96%) performed better in localizing the object with 
System ON versus OFF. Seven subjects have been 
able to reliably score on the visual acuity scale with 
the System ON. The best result to date is 1.8 logMAR 
(equivalent to Snellen 20/1262). 70 When letter reading 
was tested in 30 subjects, six could identify any letter 
of the alphabet at a 63.5% success rate (vs. 9.5% with 
the system off).Some subjects were able to put the 
letters together into words and read sentences.  62

Conjunctival erosion remained the most 
common adverse event and was seen in 3 patients but 
in the other patients the defect was small and either 
self-repaired or was easily repaired with a few sutures. 
Details of all the adverse events as well as the benefits 
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from the Argus II are provided in the reference listed 71

CONCLUSIONS
	 Currently, the Argus II is the only approved 
visual prosthesis. It is approved in Europe and in the 
US. It is intended for patients with severe visual loss 
from photoreceptor loss. It does require a major 
operation and there are associated risks with the 
procedure, but the benefits were deemed to outweigh 
the risks by the US and European regulatory bodies, 
leading to its approval as a medical implant. The 
approval of the Argus II is a major milestone in the 
field of artificial vision and provides a treatment 
option for patients for whom there was no near-term 
foreseeable treatment. 
	 The development of retinal prostheses to gen-
erate artificial vision for the blind is indeed a complex, 
long-term, expensive, and interdisciplinary undertak-
ing, but it does now provide the much awaited “good 
news” for many blind patients.
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