Determinants of Delayed Ischemic Neurological Deficits and Infarction after Aneurysmal Subarachnoid Hemorrhage
Rose Du, M.D., Ph.D.
Brigham and Women's Hospital, Boston, MA, Department of Neurosurgery
Website
Grant Program:
Clinical Neuroscience Research
Funded in:
December 2015, for 3 years
Funding Amount:
$300,000
Lay Summary
Study may help to improve outcomes following a ruptured brain aneurysm
In a two-phase exploration, neurosurgeons will seek to identify factors that may predispose certain patients with ruptured brain aneurysms to experience complications leading to poor neurological outcomes. Doing so may lead to new approaches to avoiding these complications.
When brain aneurysms (weaknesses in brain artery walls) rupture, blood shoots out into the space between the brain and skull. This situation is called “aneurysmal subarachnoid hemorrhage” (aSAH) and it kills nearly 50% of patients. Many of those who survive develop delayed ischemic neurological deficits and infarction. Scientists have suspected that these cognitive deficits and stroke occur when spasms narrow the large arteries supplying the brain and then blood flow to the brain is reduced. Therapies that prevent vasospasm, though, have not improved blood supply to the brain or prevented stroke. So the investigators instead suggest involvement of an alternative pathway.
They hypothesize that the delayed ischemic neurological deficits and stroke following aSAH may arise from tiny blood clots that form in the small vessels (“microemboli”) in the brain and induce intense electrical changes in the brain. They further hypothesize that variations in certain genes may underlie formation of microemboli and electrical changes. Their hypotheses are based in part on similar observations of a genetic predisposition to microemboli and electrical changes that can occur in some people with migraine.
In this two-phase research, the investigators first will undertake studies to better characterize the electrical changes (called “cortical spreading depression”) and microemboli formation. They also will examine the role that these two factors may play in the delayed neurological deficits and infarction following aSAH, and how these processes interact.
Thereafter, in Phase II, they will conduct genetic studies in more than 200 aSAH survivors, to try to identify genes that make some of the survivors more susceptible to forming the microemboli and electrical brain changes that are associated with poor outcomes. They will determine whether variations in specific genes are associated with delayed neurologic deficits and stroke, and then will see if the genetic and physiologic data are linked.
Significance: The findings could enable clinicians to identify patients at high risk for delayed neurological deficits and stroke following aSAH, and facilitate efforts to develop new therapeutic and genetic interventions to improve their outcomes.
Investigator Biographies
Rose Du, M.D., Ph.D.
Rose Du, MD, PhD is Associate Professor of Neurosurgery at Harvard Medical School and Director of Cerebrovascular Surgery at the Brigham and Women’s Hospital. She received her PhD in physics from the Massachusetts Institute of Technology and her MD from Harvard Medical School. She later completed her neurosurgical residency at the University of California at San Francisco and her fellowship in cerebrovascular surgery at the Brigham and Women’s Hospital. After completing her training, she joined the faculty at the Brigham and Women’s Hospital/Harvard Medical School where she specializes in the treatment of patients with cerebrovascular diseases including subarachnoid hemorrhage. Dr. Du’s research focuses on both the genetics and clinical outcome in stroke and subarachnoid hemorrhage. She has received a K08 research award from NIH to study the integrative genomics of stroke susceptibility using both mouse and human models, the results of which have been published in the journal Stroke. She has published over 100 peer-reviewed manuscripts and is an Associate Editor for the journal Neurosurgery.