Delve deeper, and you can also see changes at the cellular and molecular levels. For example, men and women show differences in both cell and receptor density in certain brain regions. Women, for example, show greater density of neurons in certain language areas as well as in the frontal lobe.
It is interesting to note that most sexually dimorphic brain regions are those that have the highest density of sex steroid receptors. The combination of hormones and experience have the power to shape the brain, often in sex-specific ways, which lead to physical differences–but also, perhaps, the gender roles that reflect cultural influences.
Yet, that said, one of the most important things to understand about sexual dimorphism is that different does not necessarily mean better. In fact, Geert de Vries, a researcher at Georgia State University, hypothesizes that sexually dimorphic brain circuits may actually be compensatory—different enough so that men and women, who have different levels of sex steroids coursing through the bloodstream and the brain, can have similar behavioral output. Thus, in some activities, like spatial problem solving or short-term memory tasks, the brain differences allow males and females to use different strategies to achieve similar levels of performance. Simply put, despite the differences, men and women do many of the same things equally well but use different strategies and brain circuits to get the job done.
Sexual Dimorphism and Psychiatric Disorders
It’s well established that most psychiatric disorders show different prevalence rates between the sexes. Depression and anxiety are more commonly seen in women, while the risk of schizophrenia is higher in men. Research studies suggest that some of those differences may be linked to hormones and how they act upon sexually dimorphic brain circuits. For example, one study suggests that women with major depressive disorder show low activation of the brain’s stress circuitry along with lower estrogen levels. Other work has shown that a low testosterone level is correlated for increased risk of psychosis in males.
Because, traditionally, research programs in science and medicine have only studied males of the species, we are only beginning to understand all the ways that hormones might influence cognition, behavior, and disease. But a paradigm shift is occurring in neuroscience, with the National Institutes of Health (NIH) instituting a sweeping policy change in 2014, which is inspiring scientists to take a closer look at sex in their research programs. This will afford the scientific community new opportunities to investigate how sex steroids affect the brain in development and beyond.
Download this page as a PDF
Stay informed!
Sign up for monthly updates on news, grants, and events.
Stay informed!
Sign up for monthly updates on news, grants, and events.